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THE PROBLEM OF TORSION IN PRISMATIC MEMBERS OF
CIRCUIAR SEGMENTAL CROSS SECTION#*

By A. Welgend
SUMMARY

The problem is solved by approximation, by setting up a
function complying with the differential equation of the stress
function, and determining the coefficients eppearing in it in such
a way that the boundary condition is fulfilled as nearly as possible.

For the semicircle, for which the solution is known, the
method yields very accurate values; the approximated stress
distribution is in good agreement with the accurately computed
distribution. Stress and strain meassurements indicate that the
approximete solutlon is in sufficiently exact agreement with reality
for segmental cross sections.

I. FUNDAMENTAL BQUATION OF TORSION AND ITS APFROXIMATE
SOLUTION BY THE METHOD OF LEAST SQUARES
The torsion problem for the prismatic member stressed by
twisting moments at the ends is formulated as follows. Find a

function f£(y, z) which in the cross-sectional Pplane satisfies
the partial differential equation .

Pr  r
5;‘2' + g;é-': -1 (1)
az_ld at the boundary of the cross 'sec'bio:'a the condition
F=0 ‘ (2)

* e s ‘

"Das Torsionsproblem fiir Stibe von kreisabschnittf8migen
Querschni;l:g." Iuftfahrt-Forschung, Band 20, IPg. 12, Feb. 8, 10hk,
Pp. 333-340.
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This function f£(y, z) then gives the torsion constent J g Of the
member according to

=k fff(:;r, z)d& az (3)

tho double integrel to be extendsd over the cross section. The
angle of twist ¥ of a length 1 is

v = a4 . (4)

M(1 'bhe applied torque G the modulus of rigld.ity of the materml

The com:ponen‘bs of the shearing stress follow from

. My o d of
T = Ty == (5)
' xy a dz ez T Jd Sy

Owing 4o the equations(5) which satisfy identically the equilibrium
conditlion

f(y, z) is called the stress function of the torsion problem.

The dlfferentn.al equation (1) W:Lth the boundary condition
equation {2) follows from the consideration of the state of strain
and the relation betwcen stress and strain, which is given by
Hooke 's law. .

Occasionally, 1t is appropriate to introduce the polar
coordinates r,p iInstead of the rectangular coordinates (y, z)
(fig. 1). The differcntial equation of the stress function together

with the boundary condition then reads

%o
Hy

52
51'2
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o g (1a)
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2

f=0 (20)
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vhile the torsion constant follows from

hfff(r P)r dr ao ' ‘ (3a)
and the sheering stress components from
‘ ) B ~N
T = -?—fid;-}—%
* o dg r o
> (52)
T = - .2—I\£(-1.. ég
@ Jd. : E\r ’ /

Rigorous methods for solving the potential problem posed by
equations (1) and (2) will not be discussed.

»

The approximate solutlion can Pe effected in three ways. A

_ function can be assumed that satisfies equation (1) but not

equation (2). If the differentisl equation is replaced by a
variation problem, it resultz in the conventiongl Ritz method; or

a funciion satigfying the differential eguation can be asgumed and
the boundary condition met in individual 001nt9 or "on the avevage,'
an exact explanation of what is meant by on the average' will be
glven later. Lastly the differential equation can be replaced by a
difference equation and the lincar equation systen ensulng from the
bouncary conditicn solved by iteration with the aid of the Lisbmann-
Wolf method. Only the second method is discussed in the present
report, after having been pointed out, among others, by Trefftz
(reference 1) and St. Bergmenn (reFerence 2).

Since the torsion problem of the segment is to be treated, we
proceed from. the differential. equation (la). It has the particular
solutions

e

RIS, : .
L fy = N A= = cos kp, g = r sin ko (6)
from which the general éolﬁtian
re 2. .
f = - K + Z Lakfk + bkgk] (7)
e}
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can be built up. Now the determination of the. coefficients &
end b, 1s involved. The next thing is to so determine them

that equation (2a) is complied within individual pointe. Among
others, probloms relating to plate bending have already been
solved by this method. :

: Another way is the following: Rather than specifying strict
campliance with the boundary condition at originally established

points it is required that by choice of the coefficients the integral

of the squares of the boundary values is least. In this instence

the boundary condition is said to be Pulfilled "on the average.”

This method 3is hereafter cslled the method of least squares.
In the formule the requirement on the factors reads

T = jg? aE = Min. d8 = Boundaxry clement (8)

The integral is to be oxtended over the entire boundary; this is
indicated by the sign f . Putting equation (7) in equation (8) gives

f{-—{f + 8, + }1:_ Ekfk(f, ¢) + bg (T, Q):l }2 ds = Min. (9)

The coefficients follow from the requirement

..ag_..-_-o’ ‘a.-J-—:O,..éJm-:O, k=1...n (10)

From oguation (10) follows & linear equation system for the ©2n +1
unknown &,, &y, and by

The practical use of the method depends wupon whether sufficlently
exact results consistent with a moderate amount of paper work are
obtainsble, especlelly for the sitresses, or in other words without
having to solve a great number of linear equations.
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II. APPLICATION 70 THE SFMICIRCLE AND THE SEGMENT
1. Semicircle; Strict and Approximate Solution
by the Method of Least Squares

The strict solution of tlmA'boreion problem for the sector was

given by St. Venant (Hendb. 4. Physik Ba VI, pp 153-154). The special
case of the semicircle is emsily treated as will be shown.

To remain in agreenmnt with the notation for the segment
(fig. 6) the coordinate system of figure 2 1s showm :E'or the semicircle.

On the ?raight boundery AB, @ = 5 and 32, in the cross
section, -2-.= = 3~

The stross fmctlon is e:@ressed by

f(r, 9) = li; X, (r) cos kp (11)

It elready fulfills the boundery condition on the streight boundary,
since k is en cdd nmuwber. The constant 1 in the internal

P 5- 3%5 is expanded 1in 2 Fourier series.

...l
L e cos k@
l= - 1,% ( 1) k (12)

n/\

'2'

Introducing equations (11) and (12) in equetion (la), the comperison”
of the coefficlents of cos kP on both sides of the equation gives

k+l

)y 2
%"+ I 'gxw - (1 F (13)

The solution of this differential equation, finite for r = 0, reads
kvl
k- ~l) 2
X = OF = -L--l);E o (14)
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Since Xy (R) must be = O

e N 6

and, hence, ' U
o k+1

£, ?) ) % 1?"? k(l:l) i?)kr) (*)

is the solution of the torsion problem for the semicircle. The
torsion constant J a ‘and. the shearing stress distri'bution are

computed from equation (16). From equation (3a) follows on three
places exectly ,

cos kq> - (16)

Jd. = 0.297 Rh = KRh

and from (5a)

1- -—g---—-——-l‘~—~>ksmcp+ . -?E-; gin 39
v mtR3 R 32._1‘_ 2 R

., .
S 41'—--%'\ sin 59 + = . . ] (17)

1
-m5(52-h)(5§£-2§—>c055@+-..] (18)
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The meximm shearing stress occurs at A (fig. 2), that is, .
for r=0 apd @=z. Here -

g Mg M - e
=—-—~*-——~=2o — 1
Tmex 3k g3 8533 (19)

Following the rigorous solution for the semicircle an approximate
solution by the method of least squares shall be derived.

Since the cross sectlon is symmetrical sbout ¢ = 7, and
following equation (7) we write:

8

i‘2

f==>% 'akrk cos ko (20)

Insteoad of coefficlent 2y the quentity x, is introduced by

ak = T — (21)

So with x=§, formula (20) reeds
RBf2 & x
:t‘=c£;-— A+ XA cos ko (20a)
| - D , - _
The boundary values are
- w2 x| ke
Oon AB (fig. 2) T =R(-x2+§:xk),kdos-_
0

AB "y

- |
Oon BC (fig. 2) ?BC=R <-1+§;:xkcoskq>>
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The method of iégast squeres y1élde as conditionel equation for X
1 2 7 '
2 - Yo : . )8 .
/ (—;\. + 2_‘ xkxkcos ~é"> AN +/ (—1 + iﬁ %, Co8 1@) dop = Min. (22)
0 0 £ 0
2 , .

Therefore

1 n .
22 0 2 ¥ cos BT con 1
£ <A. + 2 XN cos A cos - AA

n .
+ (-14-}___ Xj COS k@) cos 1@ dp = 0
0

noia

For x the lineer equation system with symmetrical metrix

‘Il.
F hmeeny 1m0 @)

is appliceble, ﬁm

B cos?KX
A R e ~ Xk =l,...n (21‘5)
Ke “h o4 a1

ot i t x
cos 5 cos 5 1 |sin (k - 2)5 sin (k + 2)~é-
b = oy + k # 1 (2kc)

k41 +1 k-1 k+73

i i
cos &~ gin 5
;Bz= - l:-l,.--n (21"6.)
1+3 1

1
Bo =-§~+

iR

The numerical calcvlation was effected for n=1, 2 .. . 6.
For n =6 the equation system reads
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ES

The coefficients were changed to decimsl fractlons and considered only
up to the fifth place after the decimel point. Six approximatione
were computed; for the first spproximation Xp = Xg = . . . = Xg = 0

was used. The result is presented in table I. Insertion of
equation (202) in equation (3a), gives the torsion constant J, as

P A S R | A = kB*
Jd—2R<8+ux0 3xl+3x5x3' 5x7:>c5-|- .) KRT (25)

and the following approximations for ® computed exact to three
places:

0.4k K 0.326 K 0.300

(1) @) (3)

i
i}
1}

i

0.300 K = 0.298
3 (6) )

K 0.298 K

(%) (5)

]

The third approximation computed from four linear equations already
gives a torsion constent value that differs by no more than
2 /3 percent from the rigorously coumputed va]_.ue.

For the stress calculation, equation (20e) is inserted in
equation (5a), so that

M, & k-1
a <
T = e kX M\ gin ko (26)
r 2R3 T © T
M n. -
To = " -m-§:§ 2& (—2). + kx, {kk 1 cos kcp) 27)
; >x g7 1
I ok
The shearing stresses T (Dc,o 2 and Ty "2 at the straight boundary
are
s M
P=5 a ( 2 Y )
T = - - 3X - " s .
r - X, =3 3). + 5::_5}“ + (28)
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w‘.p: Md. ( 4 5
el by a3 - 6x D + - 2
ot o (B e ) )

For A=1 the shea.ring'eﬁ'eeéeek'hn

-rhi --—E——x sin + 2x, sin 29 + ) (30)
> = 1 QP xa P LI
x-l_-.__...(-2+xlcosq>+212c032q)+....) (31)
"o 2R3
The two nmcimm shearing stresses are:
T
Y . %, M
T (P=2)7~=0 = T = .._,_3; __‘_3: (32)
r T omax 2K g3
P N=l _ . C _ ( . ) :
T > = T = D - + 23’ 4+ o o o
Py ? 25733 xl 3 (33)
P=5 Al
Of these expressions T 2 end L mst at least-..

epproximately disappear.
Now for a check- of the extent to which these conditions are

~met for the different approximations and also of the oxtept of the

differences between the epproximated and the exact values of Tmax
¢ .

and Ttp . The results are mpresem’ced in teble IX a.nd rigm'es 3

o 5. The fourth approximation a.lrea(w gives a servicea:ble reeult
which is somewhat further improved by the fifth and sixth efproxi-
mations.
N
Figures 3.and L show the approxinia.tims for ‘rqﬁ:‘?

and Tr"=1 which really should disappeer. It indlcates godd

agreoment in the fifth and. sixth spproximations. Figure 5 shows'

-
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* the shearing stress Tque ~at the stréigh’b boundaxry plotted
ageinst A =‘§w The fowrth, £ifth, and sixth approximations differ

1ittle from each other and from the accurate stress distridution
designatné by g. A marked departure. occurs in the immediate
vicinity of theo corner {point B in fig. 2).

2. The Segment

(a) Apnrosimate solutlon by t s .= Bince
the cross sschion iz eyametrical to ¢ = 0 (fig. 6) the

formula 20z im apuiied to the stress function f. The boundary
valuse are givon Oy

24 " Ln k
— R f~zoeta | < coB™ < . <L
T o= {2024 S % —————cos KP]O =0T . . . (3kea)
AB b \cosgqa ZO"' k cosSp )
F .._B..E(- 1+ i: cos k€p> a < P < n (34v)
BC L 0 xk .

If dsy l1sean element of the straight boundary AB and dsa
an element of the arc BC,

do

(35e)

ds. = R cos a
1 cosem

ds, = R a9 (35b)

The expression that is to be made a minimum by the cholce of th
coefficients Xy reads -

- af cosa cos¥e - 2 a
d = £ - i Xy --2--1-; cos ko) do b
cos=@ cos™p cos2Q

+ ‘/:(-1+ g X, co8 kq>)2 ap (36)
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From E—T-- = 0 Pollows. a lineaxr equation system with symetrical
Bxk

matrix for xk, ‘which 18 to be written in the form of equation (23)
The coefficients A and the right sides are given by '

ki
| Agp = rc -."c'x. + sin a , (372)
) okl @ cosakq) T -
Ay = cos c./o cmdq"" 2
E’iz:mk =1,2 .. .n (37)

K+141 f“’ cos kp cos 19 1 [sin (k - 1)
cos o do - é"
0

Ay, =
ki k+z+2q) k -1
+sm.(k+l)<p]k=l, 2, .« . n )
(37c
k+1 1 =0, 1, n
By == -m+sind,(cosem +%’~ sinaoz) (374)
1+ & cos 1 sin 1
B.L:cos 3a,f O:A(qu)" C’('7,=l,2,...n(3"{e)
0 cos‘*Hp 1

The integrals appearing in.equetion (37) are of the form

% cos PP
~=——; they can be defined by expressing cos pp by cosPq,
0 cosqm '

cospheqa, etc. A reproduction of the somewhat elsborate formulas is
omitted.

The matrix Akl including the right-heand sides B't of
equetion (23) were computed to five ‘places with the calculating
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machiné as functions -of o, To keep the paper work within tolerable
limits the process was cerried to k, 1 = 6. The result is shown in
figure 6. The unlnowns X,, X; . - - Xg were computed by

equation (23), by the Gauss method. The result ig given in table IV.

AT ter Xg, Fp oo+« Xg have been determined the torsion
constant J a and the shearing stresses can be computed.

By equation (’3a) the torsion constant is

M 1] ’.
Ja=8fj f(r, ®)r dr a9

ABC

The double integral is to be extended over the area ABC (fig. 6)

. _ ecos o
r =R

cos q

”z””f‘f: [ fof(r, o) ax

ABC AOC OBC vo

-' b4 R
+ / aop f(r, o)r dr
a, 0

Insertion of the expression for the shearing function  from
equation (23) in this formula gives

’-
T -
J. = b -— - gin 2o (coszca +—§L— sinecn)

20X ' in k ‘
+2§; 4k‘ (Ik-.?_l?_k..f'.)}g“;” | (38)
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with
. . k+2 . a cos Sl de e I . - P
Jye = cos af ~~—-1-:-§-(2P- ao : (39)
"JO  cos o

By equations (5) and (5a) the shearing stresses are

M ™ n k-~
o= loncos 9 - 3 kxA oo (k -1l)e|  (40)
g3 L. 1 . -~
My [ -1 ] )
Ty = ==——— |2\ CO8 Q + i k x, N gin (k -~ 1)¢ (b1
*z 23V L 2 T -
T = ~.c.15_.~'2>s, -S> x xkxk L cos k(p) (42)
?  2rg> T
45 :.'-n"' k"l
T = == N kX sin kg 43)
r o ? (

Perticulerly important are the formulas for the stresses at the
boundaries, Theze avs
on AB

-

M, ) k-1
e T PN i 0 (=) cos (k - 1) @] (40a)
X grm- | 1

-

AB Mo [
O o et 2 ccs a ten @
p.& QKBZ)

ol k-1
+3 k X, w8 % sin (k -~ 1) 9| (4la)
.1 cos @ . o
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on BC
Tt )
T = ——z |2 - », k% cos ko (42a)
? xmr3\ T k
M, non ;
BC .8 ZL_ k x,. sin ko (432)

r 2kRd T
Of these equations (lla) and (432) must disappear (at least
approximately).

Lastly there are the formulas for the shearing stresses in
A &nd. C ((P = Tt)-

M n
k=1
B oo =~~~9g 2 cos o - :E: k x) cos a) (4ODb)
X:)f max ERRJ l
Mo -
c k-1
T = Jli‘i[.e + i (-1) 'k xk‘ (42b)
) 2KR~ 1 J
The numerical valves for the torsion constant and the
particulerly interesting shearing stresses .# and .C rfollow
Xy ®

from equations (38), (40b), and (42b). These are also included in
table IV and in figure 7 plotted against a.

(b) Solution formula by Fourier series.- The torsion problem for
segmental cross section can also be solved by meens of the Fourier

series. The method is briefly explained.

To transform equation (la) we put

£ = --E? + o(r, @) (44)
¢ must be a potential function which assumes the values
7 -5 (15)

at the section boundary.
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Therefore
%—— °-—-—-—-—-°82°" 0<9® fa
— cos
§ =g, 57 (46)
R < . <
— o = =7
L P

This even function of ¢ is developed in a Fourier series in the
intervel -xn s P =+

P = Z 8y, cos n® (&7)

with

(¥7e)

2 @ coa n sin no
an=%~i—cosem[ Q)GKP
0

cosacp n.

The potential function ¢(r, @) d1a built up with the aid of yet
to be determined coefficients from particular solubions.

[o2]
¢‘ = z_; bnrn cos n@ (48)

At the boundary ¢ eassumes the following valuves

& n
e Z cosa

o ¢ = ern o °os no
cos

® 3=i b R" cos ng

0

1174

0§q>

(49)
$

uA

&

P
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This even fumction of ¢ is also developed in interval
% =@ =+ Iin a Fourier series

¢ = i By, cos ng (50)
§]
- 1 AN k cos¥a h
Bo=2 el ( bR i cog ko) do
- 0 cos q

1 & .
+ v <_>__ 'I.kRk cos kCP) ao
2“ oL O
1 e/ x cos¥a - -\~
Bn =2 = bR e cos k¢ ) cos no 4
0 0 cos™Q

1 [ f‘ % )
+ — . Db cos k@] cos np 4o
x .é (o" i ] /

The Fourier series (eguations (47) and (50)) obtained for the
boundary velues of @ must be identical, that is

> (50a)

B =28 n=0,1 ... (51)

This is an infinite linear equation system for the looked=for
coefficients b,. With

o2
p_R® =—B-— Xn
S (52)
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19
the system reads : e
S i ' ’ ' sin 2a
X+ 7 & = - O b ————
o T on™n 2
. o
' in k
i & Xy = cosa, / cos k¢ ap 2 ” = (53) .
1 0 0032<p _ a o
The coefficients &y, &@nd e, are given by
o -
co9 1 inn
a.on=cosna. Mn?dcp'-.s -n =1, 2, . ..
0. cos @ : no- :
A |
n cos“ngy n - o gin 2ne
a _ =cos o | —= dQ + : ' >(54)
- 4/; 'cosncp . 2 bn
n % cos kO cos ne sin(n - k)a sin(n + k)a
8, = COB G a ap :
0 cos @ 2(n ~ k) 2(n + k)j

Obviously £ thet is, the matrix (a is not symmetrical.
4 8nks ’ kn

To solve for given o +the torsion problem by this process the
Fourior series mat be limited to finitely mary terms; in other
words, the systen {53) must be approximeted by the section method.

e}
7 inclusive means that 7 = 49 factors

84 have to be computed. The numerical calculation thus becomes

For example, going as far as x

very tedlous and is thorefore omitted.
IITI. CHECK OF THEORETICAL RESULT BY TEST

With the setup described in roference 3 the torsion constant J

of a menmber of segmentsl section was optically determined; while the
maximum shearing siress T e (point A in fig. 6) was determined by

means of stress measurements. The shaft sketched in reference 3,
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figure 1 was machined to & = 70 millimeters and a flat surface
milled out which gave the desired section. The milled surfaces
corresponded to the engles o = 20°, 40°, 60°, and &°. The
comparison is illustrated in figure 7. The agreemert is plainly
sufficient. :

Translated by J. Venier
National Advisory Coomittee
for Aexonautics
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TABIE I

THE APPROXIMATIONS FOR THE UNKNOWN IN THE EQUATION

SYSTEM (23) APPLICABIE TO THE SEMICIRCIE

21

X5 Xy X, x3 X, x5 x6
First approximation

0.486 0654 | =mmmmmm | mmemmeen ] ememceee | ceemeee e
Second. approximation

0.1135 | =1.399 0.638 | =mmmemen]| ccmmccen | cemeeee | emeee-
Third approximation

0.0136 | -1.6553 | ©0.9412 | 0.3004 | -====-ee] emccceac | coeees
Fourth approximétion

-0.0086 | -1.7364 | -1.0859 | ©0.4566 | ©0.10095| =====cc= | =-ouu-
Fifth approximation

-0.0068 | -1.7310 | -L.0711 | -0.43465| -0.0835 | <0.00855 | =-==----
Sixth approximation

-o.ooo_aé -0.3251 0.0308 0.0900

-1.6978

~0.9967




TABIE II

APPROXIMATE VALUES FOR T AND
maex
First Second Third Fourth Fifth Sixth Exact
approximation |epproximation appr_oximation approximstiocn |approximation|epproximation|value
-ﬁlrmx = 0.790 2.15 2.76 2.91 2.88 2.8 2.8
R ¢
— T = 1.625 2.79 2.2 2.46 2.47 2.4 2.44
Ma @
TABLE IV
THE SOIUTIONS OF THE LINEAR EQUATION SYSTEM (23) INCLUDING THE TORSION CONSTANT
AND THE SHEARING STRESSES Tiy mv‘; AS FUNCTIONS OF a.
J 3 3
0 _ 4 |R°A |R3C
oA xo Zl 12 x3 Ill» 15 16 K = B MdTI}' MdT(P
01l1 0 0 0 0 0 0 1.571 | 0.637 | 0.637
10 | .9990] -.0023 |=.0022 |=-.0022 | -.0021 |~-.0021 |-.0020 | 1.567 642 .638
20 | .9903| -.0191 |=-.0183 |~-.0171 | -.0155 |=-.0136 |-.0116 | 1.541 .694 .66
30 | .96k2| ~-.0697 | -.06Lk | -.0562 | ~.0478 |-.0347 |-.0237 | 1.470 .79k .70
o | .9106] -.1715 | ~.1515 | -.1219 | =.0871 |-.05L4 |=-.0261 | 1.342 .91 <Th
50 | .&09| -.3375 |-.281k4 | -.2046 | -.1255 |-.0609 |-.0163 | 1.155 | 1.054 .83
60 | .6867| =.5790 | -.4511 | =.2900 | -.14h3 |-.0u6L | .0OOL 933 | 1.2k .96
70| 5060 -.8865 | -.6309 [~-.3355 |-.2002 | .0035 | .0230 706 | 1.52 1.19
& | .2743]|-1.2704 [~-.8331 |-.3711 {-.0705 | .0339 | .0261 479 | 2.03 1.65
%0 | -=.0002|-1.6978 | -.9967 |~-.3251 | .0308 | .0900 | .0359 298 |2.85 (2.1
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THE FACTORS A AMD THE RIGHT-HAND SIIES B; OF THE BQUATION

TABIE IIX

SYSTFM (23) AS FURCTIORS OF o

0
@ ) A0 A29 A30 Aho ASO A60 All A].2 %.3 Alh 1A15
0 n: 0 0 0 0 0 (] % 0 ¢ 0 0
3.14159 .
10| 3.24071 | <0.00264 }-0.0043% [<0.00597 | 0.00749 |-0.00897 | -0.01010 | 1.566kk |-0.00602 |-0.0075k | -0.00906 | -0.01037
20| 3.13455 | -.02063 | -.03272 | -.04247 | -.ohgeh | -.05262 | -.05251 | 1.53758 -.ohhos -.0524k | -.0577h | -.0506%
30| 3.13799 | -.06699 | -.09968 | -.11683 | =.12651 | -.10000 | =-.07T143 | L.46Th9 | -.12799 | -.13727 | ~-.13006 | -.108%
ko | 3.08625 15038 | -.20373 | =.20317 | ~-.15391 | ~.0T7593 00365 | 1.35273 | ~.24k59 | -.22 h5 -.162%4 | -.08115
50| 3.03497 | -.27364 | -.32573 | =.25217 | =-.11243 Oh360 11953 | 1.20477 | -.3%922 | -.25 =.11017 +02214
) 2.960 -.43301 | -.43301 | -.21651 | .04330 17321 | 12372 | 1.04720 | -.B3301 .21651 00000 [ .208%
g 2. -.61% -.48%06 | -.07954 21147 1790 -.03490 90916 -.hhga -.1218% 0888 +10030
2,730k | -.813 ~A5069 | 12798 | 28026 | 01578 § ~.19320 81686 | -.39819 | -.03306 | .10238 .0332h
O t
o | Ag A Bo3 Aoy, Ao A6 Ay Ay A3 A6 o hs
X X X
0|0 5 0 ) 0 0 2 0 0 0 > o
10 |-0.01152 | 1.56316 |-0.00915 |-<0.01054 | <0.01179 |-0.01278 | 1.65020 | -0.01192 01309 |-0.01409 | 1.%5763 | 0.01427
20| -.05811 | 1.5172% | -.06052 | ~-.06446 06517 | =.06266 | 1.50095 | -.06905 | -.06899 | -.06607 | 1.49955 | =-.07096
0] -.07615 | 1.h257h | -.0k845 | -.13793 | -.11549 | -.08488 | 1.42150 | ~-.1%005 | ~-.12220 | -.09866 | 1.37016 | -.12379
ol -.00323 | 1.31838 | -.23081 | -.27387 | -.2080 | -.0b464 | 1.35679 | ~-.18016 | ~.15487 | ~.1abk1 | 1.36711 ] -.20
s0] .090h3 | 1.23693 | -.26244 -.1859 -.07796 .01005 | 1.30337 | -.26029 | ~.22327 | ~.15017 | 1.23249 | -.35332
&) .Om 1.19% -0281,"6 -017939 --m +00TT73 1019? "-W -029383 -om 1006112 -nm
g .00008 | 1.17TT2 | ~.34199 | -.23029 | -.05523 | .08821| 1.020 S19ih | -23139 | .o72k0 ] .98608] -.%1085
-.0k833 | 1.11997 | -.46668 | -.2k801 | .o713k | 18163 8906 | ~.51 -0762 | 16559 | .99088| =-.43332
0 ,
o|o S 0 3 x 0 0 0 0 0 0
30 |-0.01518 1 1.55551 ]-0.01616 | 1.55397{ 3.13722 00608 | -0.00771 | -0.0092k | -0.01065 |-0.01191 | -0.01299
20| -.06T8 | 1.hooT7 | -.06023 | 1.50187] 3.10788 | -.0M569| -.05565| -.06285| =~.06676 | -.067ak ] ~-.06399
0| -.11065 | 1.43861 | -.1328% | 1.k2295| 3.03466 | =-.13016| -.15801| =-.16013| =.14508 | ~-.11%5k7 -.07639
| -.a7969 | 1.31970 -.% 1.269751 2.90019 | -.2 -.29%0 | -.2ho1k | -.126506 | -.06679] .o0212h
50| -.25712 | 1.16030 | -. 1.18809 | 2.73528 | ~.h66R81 -.41k3g9| -.2639% | -.0752% 0@0 13652
@] -.21033 | 1.10596 | -.36623 | 1.12647 | 2.527h5 | -.65052 | -.47631| -.17321] .09279 | .18867] .108R5
g -.13h& 1.06098 | -.h5118 | 95821 2.30638 | ~.750 | -.b5 00143 23550 5238 | -.06247
-.16127| .88%9 | -.53599 | .9@319| 2.09340 | -.92437| -.35538 25968 | -.02243| -.18709
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94 NACA TM No. 1182

Figure 1.- The coordinates of the section points and the shearing
stress components.

Figure 2.- Semicircular section with coordinate system.
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Figure 3.- Approximations for the shearing

stress 7

at the straight boundary AB of
the semicircular section.

1:1. Approximation 4:4. Approximation
2:2, Approximation 5:5. Approximation
3:3. Approximation 6:6. Approximation
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Figure 4.- The approximations for Ty at the

boundary BC of the semicircular section.
Approximation 4:4. Approximation
2:2. Approximation 5:5. Approximation
3:3. Approximation 6:6. Approximation

1:1.
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Figure 5.- The approximations for T

1:1.
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Figure 6.~

semicircular section.

NACA TM No, 1182

at the boundary AB of the

Approximation 4:4. Approximation
Approximation b5:5. Approximation
Approximation 6:6. Approximation
exact solution

Notation at segment.




2
3
S
16 3¢ H
2. % N\ | I %?_3 [ ﬂﬁd Lf g
T q T3 : 2
7 o Measured | 28 » S
? \ values - : .
\ -
©
/4 g /
4 \ 1 -

J

04 \\ 98 /)//(_@" - C
) \ L~ 1 M Ly
o a

0

20 W 60 80 o&° 100 0 a0 W - & 00« W

max

of the segmental section plotted against the angle at center o; comparison between
theoretical values (full curve) and experimental values. .

Figure 7.- The torsion constant Id and the shearing stresses -r% and T x%r = 7T

L3



IIHINHIIH!INIIHHIIHINIIIIIWilllﬂ“llilﬂlil“ll ]



